Capture Technology Meeting, Pittsburgh, PA, August 8

Т

12, 2016

NETL CO,

Application of a Heat Integrated Post-combustion CO₂ Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Award Number DE-FE0007395

Heather Nikolic, Jesse Thompson and Kunlei Liu

University of Kentucky - Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

NETL CO₂

Capture Technology Meeting, Pittsburgh, PA, August 8

- 12, 2016

Presentation Outline

- Project Overview
- Milestones
- Success Criteria
- Key Findings

NETL

ç

Technology Meeting, Pittsburgh,

PΑ,

August

8-12, 2016

Project Overview

- 2 MWth (0.7 MWe) advanced post-combustion CO₂ capture pilot
- Catch and release program
- Designed as a modular configuration
- Testing at Kentucky Utilities E.W. Brown Generating Station, Harrodsburg, KY, approximately 30 miles from UKy-CAER

- Includes several UKy-CAER developed technologies
- Two solvent testing campaigns (MEA baseline and advanced H3-1)

Project Organization

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12,

- 12, 2016

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Project Funding

Project Participants

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12,

Project Performance Dates

- BP1: October 1, 2011 to January 31, 2013 (16 months)
- BP2: February 1, 2013 to August 31, 2013 (7 months)
- BP3: September 1, 2013 to March 31, 2015 (19 months)
- BP4: April 1, 2015 to September 30, 2016 (18 months)

NETL CO₂

Capture

Technology Meeting, Pittsburgh, PA, August 8

Project Goal and Objectives

Goal

 Develop a pathway to achieve the US DOE NETL post-combustion CCS target of 90% CO₂ capture with a cost less than \$40/tonne CO₂-captured

Objectives

- To demonstrate a heat-integrated post-combustion CO₂ capture system with an advanced solvent
- To collect corrosion data leading to selection of appropriate materials of construction for a 550 MWe commercial-scale carbon capture plant
- To gather data on solvent degradation, water management, system dynamic control and other information during the long-term verification campaigns
- To provide data and design information for larger-scale pilot plant followed by a commercial-scale project

NETL CO

Ķ

T

. 12, 2016

Process Intensification

UKy-CAER

CO₂ Capture

Technology

Heat

Integration

Advanced

Solvent

Technology Description

Project Key Milestones

B	> Title	Completion Date
1	Preliminary Technical and Economic Analysis that details the viable technical merit of UKy-CAER CCS process for slipstream scale study	12/18/12
1	Initial EH&S report that details environmental implication of slipstream operation and proposed mitigation for anticipated environmental safety obstacles to operation, if any	11/27/12
2	Finalize P&ID for slipstream modular unit fabrication	5/16/13
2	UKy-CAER Finalize Test Plan for slipstream campaigns with completed P&ID specifications	5/15/13
3	Pouring of foundations for platform for slipstream modular units setup which meets engineering design load/specifications	9/11/14
3	KMPS fabricates slipstream modular units and delivers to host site, EW Brown Generating Station, for installation	8/28/14
3	Control Room/ Field Lab Trailer Assembled, Setup and Permitted	2/20/15
3	Tie-in piping with power plant complete	3/6/15
3	Slipstream pilot unit commissioning	3/31/15
4	MEA long term test campaign	1/15/16
4	H3-1 long term test campaign	7/1/16
4	Final Technical Economic Analysis and Final EH&S Assessment	9/30/2016
4	Project Final Scientific Report	9/30/2016

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Project Key Findings

NETL CO,

Capture Technology Meeting, Pittsburgh, PA, August 8

Project BP4 Success Criteria - Achieved

A heat-integrated post-combustion CO₂ capture system with:

5-25% less energy consumption compared to the DOE Reference Case 10.

Preliminary Experimental Results Compared to the Technical and Economic Analysis	Solvent Regeneration Energy
DOE Reference Case 9 (no CO ₂ Capture)	
DOE Reference Case 10 (RC 10)	1540 BTU/lb-CO ₂
UKy-CAER CCS process MEA case, according to TEA	1340 BTU/lb-CO ₂ 13% lower than RC 10
UKy-CAER CCS process MEA case, experimental parametric campaign	1200 to 1750 BTU/lb-CO₂ Range due to changing operating conditions during parametric campaign.
UKy-CAER CCS process H3-1 case, according to TEA	973 BTU/lb-CO ₂ 36% lower than RC 10
UKy-CAER CCS process H3-1 case, experimental parametric campaign	900 to 1600 BTU/lb-CO ₂ Range due to changing operating conditions during parametric campaign.

The assumptions made in the TEA seem reasonable, based on the parametric campaigns.

👯 Center for Applied Energy Research NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Project BP4 Success Criteria - Achieved

A heat-integrated post-combustion CO_2 capture system with:

H3-1 Long-term Campaign Data from 4/25/2016

Project BP4 Success Criteria - Achieved

A heat-integrated post-combustion CO₂ capture system with:

Much cooler recirculating cooling water, 3-9 °F compared to a conventional cooling tower at the same ambient conditions.

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

NETL CO

Technology Meeting, Pittsburgh, PA, August 8 – 12, 2016

Project BP4 Success Criteria - Achieved

A heat-integrated post-combustion CO₂ capture system with:

An advanced solvent that has 15-20% less corrosivity than a 30 wt% MEA.

After ~100 Long-term Campaign Hours

A

HR

After ~250 Long-term Campaign Hours

A = absorber location
HR = designates the hot,
CO₂-rich amine stream

CL = designates the cold,CO₂-lean amine stream location
 S = stripper location

CL

S

👯 Center for Applied Energy Research NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12, 2016

Project BP4 Success Criteria - Achieved

A heat-integrated post-combustion CO₂ capture system with:

An advanced solvent that has 15-20% less corrosivity than a 30 wt% MEA.

H3-1 is ~90% less corrosive than MEA.

Project BP4 Key Finding

Liquid/gas distribution can significantly reduce the absorber efficiency.

concentration, inlet amine CO₂-loading and temperature.

NETL CO₂

Capture Technology Meeting, Pittsburgh, PA, August 8

- 12,

Project BP4 Key Finding

Liquid/gas distribution can significantly reduce the absorber efficiency. Es. $m/s \cdot (kg/m^3)^{1/2}$

Fs, $m/s \cdot (kg/m^3)^{1/2}$ 0.5 0.6 0.8 3 4 5 6 2 16 14 12 10 1 8 0.8 6 5 0.6 0.5 4 0.4 3 ∆p, mbar/m ∆p, in wc/ft 0.3 2 0.2 **IMTP #40** 0.1 Liquid Loading 0.8 Top Curve to Bottom 0.08 m³/m²h gpm/ft² 0.6 60 147 122 50 0.5 0.06 98 40 30 73 0.05 0.4 49 20 24 10 0.04 10 4 0.3 0 0.03 System Air-Water, Ambient 0.2 Fower: 30 in. Diameter 0.02 0.5 0.6 0.8 1 2 5 0.4 3 4 Fs, ft/s-(1b/ft³)^{1/2}

👯 Center for Applied Energy Research

Project BP4 Key Finding

Understanding the L/R exchanger performance is critical when comparing regeneration energies.

Project BP4 Key Results

80 hours of thermal reclaiming removed ~ 50% of each element.

👯 Center for Applied Energy Research

Project BP4 Key Results

80 hours of thermal reclaiming removed ~ 50% of each element.

Cadmium and silver concentrations remained below limits of detection.

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Project BP4 Key Results

Thermal reclaiming may be necessary to keep elements below the RCRA limits.

Elemental Analysis of H3-1 Solvent from				
Near the End of the Campaign				
Element	Average of Replicate Samples (ppm)	RCRA limit (ppm)		
Cr	0.82	5		
As	< 0.63	5		
Se	3.21	1		
Ag	< 0.13	5		
Cd	< 0.63	1		
Ва	< 2.5	100		
Pb	< 0.63	5		

NETL CO₂

Capture Technology Meeting, Pittsburgh, PA, August 8

1

12, 2016

Key Knowledge Gained

- Liquid/gas distribution can significantly reduce the absorber efficiency.
- It is important to consider the L/R exchanger performance when reporting and comparing solvent regeneration values.
- Thermal reclaiming may be needed for RCRA element management.

NETL CO,

Technology Meeting, Pittsburgh, PA, August 8

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8 Т 12 2016

Technology Development Pathway

NETL

ŝ

Technology Meeting, Pittsburgh, PA, August 8

- 12, 2016

Acknowledgements

José Figueroa, DOE NETL

CMRG Members

Donnie Duncan, David Link, Michael Manahan, Mahyar Ghorbanian, and Jeff Fraley, LG&E and KU UKy-CAER Slipstream Team

